top of page

Séminaire CIMMUL | Jason Bramburger

ven. 06 févr.

|

Local VCH-2830

Data-driven system analysis using polynomial optimization and the Koopman operator

Heure et lieu

06 févr. 2026, 13 h 30 – 17 h 30

Local VCH-2830, Pavillon Alexandre-Vachon, Québec, QC G1V 0A6, Canada

À propos de l'événement

Commutations aléatoires de dynamiques hamiltoniennes


Jason J. Bramburger

Professeur

Université Concordia


Résumé

Many important statements about dynamical systems can be proven by finding scalar-valued auxiliary functions whose time evolution along trajectories obeys certain pointwise inequality that imply the desired result. The most familiar of these auxiliary functions is a Lyapunov function to prove steady-state stability, but such functions can also be used to bound averages of ergodic systems, define trapping boundaries, and so much more. In this talk I will highlight a method of identifying auxiliary functions from data using polynomial optimization. The method leverages recent advances in approximating the Koopman operator from data, so-called extended dynamic mode decomposition, to provide system-level information without system identification. The result is a flexible, data-driven, model-agnostic computational method that does not require explicit model discovery that can be used to identify phase transitions in parametric problems and find coherent structures in data.

Google Maps a été bloqué en raison de vos paramètres de données analytiques et de cookies fonctionnels.

Partager cet événement

bottom of page