top of page

Séminaire CIMMUL | Li-Pang Chen

jeu. 25 sept.

|

Local PLT-2510

Statistical Machine Learning Methods for Noisy Survival Data Analysis

Heure et lieu

25 sept. 2025, 13 h 30 – 14 h 30

Local PLT-2510, 1065 Av. de la Médecine, Québec, QC G1V 0A6, Canada

À propos de l'événement

Statistical Machine Learning Methods for Noisy Survival Data Analysis


Li-Pang Chen

Université nationale Chengchi


Résumé

In medical studies and bioinformatics, an important research direction is the analysis of time-to-event data, where the main challenges often arise from incompleteness due to censoring mechanisms. With the growing ease of data collection, it is now common to encounter datasets with a large number of variables. Among these, even rare variables may carry valuable information. Another major challenge is measurement error, a typical feature of noisy data. In my presentation, I will introduce my recent work on survival analysis with multivariate or high-dimensional error-prone variables from the perspective of statistical machine learning. Specifically, I will first present graphical proportional hazards models, which incorporate network structures among variables. To simultaneously handle variable selection and network detection, I propose a penalized likelihood approach with a double-penalty function. Next, I will introduce the accelerated failure time model…


Google Maps a été bloqué en raison de vos paramètres de données analytiques et de cookies fonctionnels.

Partager cet événement

bottom of page